
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 42
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE
CLUSTERS

P.Umarani, Dr. J.C.Miraclin Joyce Pamila M.E., Ph.D.,
PG scholar, Assistant Professor (Sr.Grade)
Department of Computer Science &Engg
Government College of Technology, Cbe

pumarani90@gmail.com

Abstract
 Virtual private servers (VPSs) rented

from VPS provider is cost-efficient for a
tenant with a limited budget to establish a
virtual MapReduce cluster. To provide an
appropriate scheduling scheme for this type of
computing environment, we propose in this
paper a job-driven scheduling scheme (JoSS)
from a tenant’s perspective. JoSS provides not
only job level scheduling, but also map-task
level scheduling and reduce-task level
scheduling. JoSS classifies MapReduce jobs
based on job scale and job type and designs an
appropriate scheduling policy to schedule
each class of jobs. The goal is to improve data
locality for both map tasks and reduce tasks,
avoid job starvation, and improve job
execution performance. Two variations of
JoSS are further introduced to separately
achieve a better map-data locality and a faster
task assignment. Extensive experiments are
conducted to evaluate and compare the two
variations with current scheduling algorithms
supported by Hadoop.

Keywords- MapReduce, Hadoop, virtual
MapReduce cluster, map-task scheduling,
reduce-task scheduling

I. INTRODUCTION
Map-reduce is a distributed

programming model proposed by Google to
process vast amount of data in a parallel
manner. Due to programming-model
simplicity, built-in data distribution,
scalability, and fault tolerance .MapReduce

and its open-source implementation called
Hadoop have been widely employed by
many companies, including Facebook,
Amazon, IBM, Twitter, and Yahoo to
process their business data. MapReduce has
also been used to solve diverse applications,
such as machine learning, data mining,
bioinformatics, social network, and
astronomy.

MapReduce enables a programmer to
define a MapReduce job as a map function
and a reduce function, and provides a
runtime system to divide the job into
multiple map tasks and reduce tasks and
perform these tasks on a MapReduce cluster
in parallel. Typically, a MapReduce cluster
consists of a set of commodity
machines/nodes located on several racks and
interconnected with each other in a local
area network (LAN). In this paper, we call
this a conventional MapReduce cluster. Due
to the fact that building and maintaining a
conventional MapReduce cluster is costly
for a person/organization with a limited
budget, an alternative way is to establish a
virtual MapReduce cluster by either renting
a MapReduce framework from a
MapReduce service provider (e.g., Amazon)
or renting multiple virtual private servers
(VPSs) from a VPS provider (e.g., Linode
or Future Hosting). Each VPS is a virtual
machine with its own operating system and
disk space. Due to some reasons, such as
availability issue of a datacenter or resource
shortage on a popular datacenter, a tenant

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 43
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

might rent VPSs from different datacenters
operated by a same VPS provider to
establish his/her virtual MapReduce cluster.

II. HADOOP FRAMEWORK
Apache Hadoop is an open source

framework for distributed storage and
processing of large sets of data on commodity
hardware. Hadoop enables businesses to
quickly gain insight from massive amounts of
structured and unstructured data. Numerous
Apache Software Foundation projects make up
the services required by an enterprise to
deploy, integrate and work with Hadoop.

A. Map/Reduce Programming Model
MapReduce paradigm is based on sending

the computer to where the data resides.
MapReduce program executes in three stages,
namely map stage, shuffle stage, and reduce
stage. During a MapReduce job, Hadoop sends
the Map and Reduce tasks to the appropriate
servers in the cluster. The framework manages
all the details of data-passing such as issuing
tasks, verifying task completion, and copying
data around the cluster between the nodes.
Most of the computing takes place on nodes
with data on local disks that reduces the
network traffic. After completion of the given
tasks, the cluster collects and reduces the data
to form an appropriate result, and sends it back
to the Hadoop server.
B.HDFS File System

Hadoop File System was developed using
distributed file system design. It is run on
commodity hardware. Unlike other distributed
systems, HDFS is highly fault tolerant and
designed using low-cost hardware. HDFS holds
very large amount of data and provides easier
access. To store such huge data, the files are
stored across multiple machines. These files are
stored in redundant fashion to rescue the
system from possible data losses in case of
failure. HDFS also makes applications
available to parallel processing.
C. Input/Output Read and Write

The MapReduce framework operates on
<key, value> pairs, that is, the framework
views the input to the job as a set of <key,
value> pairs and produces a set of <key, value>

pairs as the output of the job, conceivably of
different types. The key and the value classes
should be in serialized manner by the
framework and hence, need to implement the
Writable interface. Additionally, the key
classes have to implement the Writable-
Comparable interface to facilitate sorting by the
framework. Input and Output types of a
MapReduce job: (Input) <k1, v1> map -><k2,
v2> reduce -><k3, v3>(Output).

III. BACKGROUND
The FIFO algorithm [2] is a default

scheduling algorithm provided by Hadoop
MRv1. It follows a strict job submission order
to schedule each map task of a job and
meanwhile attempts to schedule a map task to
an idle node that is close to the corresponding
map-input block. However, the FIFO algorithm
only focuses on map-task scheduling, rather
than reduce-task scheduling. Hence, when
FIFO is adopted in a virtual MapReduce
cluster, its low reduce-data locality might cause
a long job turnaround time. Besides, FIFO is
designed to achieve node locality and rack
locality in conventional MapReduce clusters,
rather than achieving the VPS-locality and Cen-
locality in a virtual MapReduce cluster.
Consequently, the map-data locality of FIFO
might be low in a virtual MapReduce cluster. In
addition to the FIFO algorithm, Hadoop also
provides the fair scheduling algorithm and the
capacity scheduling algorithm-*-

The former is proposed by Facebook to
fairly assign computation resources to jobs such
that all jobs obtain an equal share of resources
over time. The latter, introduced by Yahoo!,
also allows multiple users to share a Map-
Reduce cluster. It supports multiple queues and
allocates a fraction of a cluster’s computation
resources to each queue, i.e., all jobs submitted
to a queue can only access to the resource
allocated to the queue. Similar to these two
algorithms, JoSS allows multiple jobs to
simultaneously share the computation resource
of a virtual MapReduce cluster. But different
from the two algorithms, JoSS further provides
reduce-task scheduling to improve job
performance. There have been many studies
[3], [4], [6], [7], [11], [14] on MapReduce task
scheduling.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 44
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Zaharia et al. [3] presented the delay
scheduling algorithm to improve data locality
by following the FIFO algorithm but relaxing
the strict FIFO job order. If the scheduling
heuristic cannot schedule a local map task, it
postpones the execution of the corresponding
job and searches for another local map task
from pending jobs. A similar but improved
approach is further introduced in [4]. However,
similar to FIFO, this approach did not provide
reduce-task scheduling. Jin et al. [5] proposed
the BAlance-Reduce (BAR) algorithm, which
produces an initial task allocation for all map
tasks of a job and then takes network state and
cluster workload into consideration to
interactively adjust the task allocation to reduce
job turnaround time. In order to simplify BAR,
the authors assumed that all local map tasks
spend identical execution time. But this
assumption is not realistic since the map-task
execution time fluctuates even though when the
processed input size is the same. Besides,
reduce-task scheduling was not addressed by
BAR. Tian et al. [6] proposed a MapReduce
workload prediction mechanism to classify
MapReduce workloads into three categories
based on their CPU and I/O utilizations and
then proposed a Triple-Queue Scheduler to
improve the usage of both CPU and disk I/O
resources under heterogeneous workloads.

Guo [7] presented an optimal map-task
scheduling algorithm, which converts a task
assignment problem into a Linear Sum
Assignment Problem so as to find the optimal
assignment. Nevertheless, applying this
algorithm to real-world MapReduce clusters
needs to carefully determine an appropriate
time point to conduct the algorithm since slaves
might become idle at different time points.
Ehsan and Sion [8] introduced a co-scheduler
called LiPS, which utilizes linear programming
to simultaneously co-schedule map-input data
and map tasks to nodes such that dollar cost can
be minimized. But their assumption, i.e.,
MapReduce jobs and their input data are
submitted together, might increase job
turnaround time since replicating the data to the
distributed filesystem of the cluster needs to
take a while. Polo et al. [9] introduced a task
scheduler to dynamically predict the

performance of concurrent MapReduce jobs
and adjust the resource allocation for the jobs.
The goal is to allow MapReduce jobs to meet
their performance objectives without over-
provisioning of physical resources. Some other
studies aim to enhance the performance of
MapReduce in a cloud environment.

Palanisamy et al. [10] presented a
MapReduce resource allocation system called
Purlieus, which enables a cloud provider to
place MapReduce input data to appropriate
physical machines and then place VMs to the
physical machines so as to provide both map
locality and reduce locality. Different from
Purlieus, JoSS presented in this paper is
designed from the perspective of a tenant who
rents VPSs from a VPS provider to build a
virtual MapReduce cluster, rather than from the
perspective of a cloud provider. Park et al. [11]
introduced a locality-aware dynamic VM
reconfiguration technique for virtual clusters
running the Hadoop platform by dynamically
changing the computing resource of a VM to
maximize the data locality of map tasks. Bu et
al. [12] proposed a task scheduling strategy
called ILA to mitigate interference between
virtual machines and meanwhile preserve
MapReduce task data locality. Similar to [10],
the schemes proposed in [11] and [12] were
designed from the viewpoint of a cloud
provider since the data locality in all layers
including node locality, rack locality, and off-
rack are clear to the provider. However, in a
virtual MapReduce cluster considered in this
study, a tenant does not know all of the above
mentioned data-locality levels.

IV. THE EXISTING SCHEME

A.Hadoop default FIFO scheduler
The Hadoop default FIFO scheduler has

already taken data locality into account. When
a slave node with empty map slots sends the
heartbeat signal, the MapReduce scheduler
checks the first job in the queue. If the job has
map tasks whose input data blocks are stored in
the slave node, the scheduler assigns the node
one of these local tasks. If a slave node has
more unused map slots, the scheduler will keep
assigning local tasks to the node. However, if
the scheduler can no longer find a local task

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 45
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

from the first job, it assigns the node one and
only one non-local task during this heartbeat
interval, no matter how many free slots the
node has. This default FIFO scheduler,
however, has deficiencies. First of all, it
follows the strict FIFO job order to assign
tasks, which means it will not allocate any task
from other jobs if the first job in the queue still
has an unassigned map task. Secondly, the data
locality is randomly decided by the heartbeat
sequence of slave nodes. If we have a large
cluster that executes many small jobs, the data
locality rate could be quite low. As mentioned,
in a MapReduce cluster, tasks are assigned to a
slave node in response to the node’s heartbeat.
With the FIFO scheduler, heartbeats are also
processed in a FIFO order and a node is
assigned a non-local map task when there is no
local task from the first job. In a large cluster
many nodes heartbeat simultaneously.
However, a small job has less input data that
are stored in a small number of nodes. It is thus
a high probability event that the scheduler
assigns tasks to slave nodes that do not have the
small job’s input data but give heartbeats first.
A slave node with empty map slots that sends
in a heartbeat first will always be assigned at
least one map task, local or non-local. It is
highly likely that the job’s tasks will be
assigned to many of the nodes which do not
have the input data blocks before a node even
gets a chance to grab a local task from the job.

B.The Fair Scheduler
The Fair Scheduler aims to give every user a

fair share of the cluster capacity over time. If a
single job is running, it gets all of the cluster.
As more jobs are submitted, free task slots are
given to the jobs in such a way as to give each
user a fair share of the cluster. A short job
belonging to one user will complete in a
reasonable time even while another user’s long
job is running, and the long job will still make
progress. Jobs are placed in pools, and by
default, each user gets their own pool. A user
who submits more jobs than a second user will
not get any more cluster resources than the
second, on average. It is also possible to define
custom pools with guaranteed minimum
capacities defined in terms of the number of
map and reduce slots, and to set weightings for

each pool. The Fair Scheduler supports
preemption, so if a pool has not received its fair
share for a certain period of time, then the
scheduler will kill tasks in pools running over
capacity in order to give the slots to the pool
running under capacity.

C.The Capacity Scheduler
The Capacity Scheduler takes a slightly

different approach to multiuser scheduling. A
cluster is made up of a number of queues (like
the Fair Scheduler’s pools), which may be
hierarchical (so a queue may be the child of
another queue), and each queue has an
allocated capacity. This is like the Fair
Scheduler, except that within each queue, jobs
are scheduled using FIFO scheduling (with
priorities). In effect, the Capacity Scheduler
allows users or organizations (defined using
queues) to simulate a separate MapReduce
cluster with FIFO scheduling for each user or
organization. The Fair Scheduler, by contrast,
enforces fair sharing within each pool, so
running jobs share the pool’s resources.

V. PROPOSED SYSTEM

The proposed system implements JoSS-
T in Hadoop-0.20.2 and conduct extensive
experiments to compare them with several
known scheduling algorithms supported by
Hadoop, including the FIFO algorithm, Fair
scheduling algorithm, and Capacity scheduling
algorithm. The experimental results
demonstrate that JoSS-T outperform the other
tested algorithms in terms of map-data locality,
reduce-data locality, and network overhead
without causing too much overhead, regardless
of job type and scale.

The contributions of this proposed system
are as follows.

1. We introduce JoSS to appropriately
schedule Map-Reduce jobs in a virtual
MapReduce cluster by addressing both
map-data locality and reduce-data
locality from the perspective of a tenant.

2. By classifying jobs into map-heavy and
reduce heavy jobs and designing the
corresponding policies to schedule each
class of jobs, JoSS increases data locality
and improves job performance.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 46
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Furthermore, by classifying jobs into
large and small jobs and scheduling
them in a round-robin fashion, JoSS
avoids job starvation and improves job
performance.

3. A formal proof is also provided to
determine the best threshold for
classifying MapReduce jobs.

4. JoSS-T is proposed to achieve two
conflicting goals: speeding up task
assignment and further increasing the
VPS-locality.

5. We refer to a set of MapReduce
benchmarks to create two different
MapReduce workloads for evaluating
and comparing JoSS-T with three known
scheduling algorithms supported by
Hadoop. Moreover, a set of metrics
showing data-locality, network
overhead, job performance, and load
balance are used to achieve a
comprehensive comparison.

A.Job Classification
Before introducing the algorithm of JoSS,

first describe how JoSS classifies jobs and
schedules each class of jobs. Let Sreduce and
Smap be the total reduce-input size and the total
map-input size of J, respectively. Based on the
ratio of Sreduce over Smap, J can be classified
into either a reduce heavy job or a map-heavy
job. If J satisfies Eq. (1), implying that the
network overhead is dominated by J’s reduce-
input data, then J is classified as a reduce-heavy
job (RH job for short). Otherwise, J is classified
as a map-heavy job (MH job for short). Note
that td is a threshold to determine the
classification, td ≥ 0.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
> 𝑡𝑡𝑆𝑆

(1)

In fact, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∣ 𝐵𝐵𝐵𝐵 ∣𝑆𝑆

𝐵𝐵=1 where |Bi| is
the size of Bi, and Sreduce = ∑ (∣ 𝐵𝐵𝐵𝐵 ∣∙𝑆𝑆

𝐵𝐵=1
𝐹𝐹𝐹𝐹𝐵𝐵) where FPi is the filtering percentage of Bi
showing the ratio of Mi’s map-output size over
Mi’s map-input size, FPi ≥ 0. In order to reduce
Eq. (1) and the above classification, we chose
five MapReduce benchmarks: Word-Count,
Grep, Inverted-Index, Sequence-Count and
Permu from PUMA to conduct experiments.

Eq. (1) can be reduced as based on the analysis
from [1],

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

=
∑ (∣ 𝐵𝐵𝐵𝐵 ∣∙ 𝐹𝐹𝐹𝐹𝐵𝐵)𝑆𝑆
𝐵𝐵=1
∑ ∣ 𝐵𝐵𝐵𝐵 ∣𝑆𝑆
𝐵𝐵=1

= 𝐹𝐹𝐹𝐹𝐹𝐹

> 𝑡𝑡𝑆𝑆 (2)
and the condition used to classify J can be
reduced as

 J= �𝑆𝑆 𝑅𝑅𝑅𝑅 𝐹𝐹𝑗𝑗𝑗𝑗, 𝐵𝐵𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹 > 𝑡𝑡𝑆𝑆
𝑆𝑆 𝑀𝑀𝑅𝑅 𝐹𝐹𝑗𝑗𝑗𝑗, 𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆.

�

(3)

Based on the input scale of J to Navg VPS,
which is the average datacenter scale of a
virtual MapReduce ,cluster the classification
rule is below,

𝐽𝐽 = �𝑆𝑆 𝑒𝑒𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 𝐹𝐹𝑗𝑗𝑗𝑗, 𝐵𝐵𝑖𝑖 𝑆𝑆 ≤ 𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁_𝑉𝑉𝐹𝐹𝑆𝑆
𝑆𝑆 𝑒𝑒𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆 𝐹𝐹𝑗𝑗𝑗𝑗, 𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆.

�

(4)

B.Scheduling Policies

JoSS utilizes the following three scheduling
policies.

• Policy A
This policy is designed for a small RH job.

If J is a small RH job, it would be better that
each reducer of J is close to all mappers of J
since the reducer can more quickly retrieve its
input data from all the mappers. But this also
implies that all mappers of J should be close to
each other. Hence, policy A works as follows.
It first chooses cenw, which is a datacenter
having the least amount of unprocessed tasks
among all the k datacenters, cenw, belongs to
cen1,cen2, . . . ,cenk. Then it schedules all tasks
of J to cenw by putting J’s map tasks and J’s
reduce tasks at the end of MQw,0 and RQw,0,
respectively. In this way, all these tasks can be
executed only by the VPSs at cenw, and each
reducer of J can retrieve its input data from its
local datacenter (i.e., reduce-data locality can
be improved).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 47
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig. 1. An example showing block
locations of job Y in a virtual

MapReduce cluster comprising three
datacenters.

• Policy B

This policy is designed for a small MH job.
If J is a small MH job, it would be better that
each mapper of J is close to its input block, and
each reducer of J is close to most mappers of J
. Hence, policy B works as follows: It
schedules J ’s map tasks based on the
number of unique input blocks of J held by
each datacenter. If a datacenter holds more
unique blocks of J , more map tasks of J
will be scheduled to the VPSs at this
datacenter. The purpose is allowing each
mapper of J to retrieve its input block from
its local datacenter. In addition, to make J ’s
reducers close to most J ’s mappers, policy
B schedules all reduce tasks of J to the
datacenter that holds the maximum number of
J ’s unique blocks.

The task scheduler of JoSS
Input : J and input-data description
Output:task-scheduling decision
Procedure:

1. Calculate a hash value for J’s executable

code and J’s input-data type;
2. Let H be a set of hash values previously

generated by JoSS;
3. If the hash value is not in H{
4. Append all map tasks of J to the end of

MQFIFO;
5. Append all reduce tasks of J to the end

of RQFIFO; }
6. else {
7. if J is a small RH job {//Use policy A.

8. Let cenw be a datacenter having the
least unprocessed tasks among
cen1,cen2,…cenk;

9. Append all map tasks of J to the end of
MQw,0;

10. Append all reduce tasks of J to the end
of RQw,0;}

11. else {
12. Let Lc be a set of all unique input

blocks of J held by cenc where c=1,2,…k;
13. Let α = m; /*m is the number of map

tasks of J.*/
14. while α > 0{/*i.e., not all map tasks of

J are scheduled.*/
15. Let Ld is the first largest set among

L1,L2,..…,Lk;
16. Let |Ld| be the size of Ld;
17. Let cend be the related datacenter;
18. If J is a small MH job {//Use policy B
19. Append |Ld | map tasks of J to the end

of MQd,0;}
20. else {/*i.e., J is a large job, so use

policy C.*/
21. Let ρ be the total number of map-task

queues in cend;
22. Generate a new map-task queue

MQd,p+1;
23. Append |Ld| map tasks of J to the end

of MQd,p+1;}
24. for c=1 to k{
25. Delete a block from Lc if the block is

in Ld;}
26. α = α-|Ld|;}
27. Let cenc be a datacenter holding the

largest number of unique input blocks of
J;

28. If J is a small MH job{//Use policy B.
29. Append all reduce tasks of J to the end

of RQe,0;}
30. else { /*i.e., J is large job, so use policy

C.*/
31. Let q be the total number of reduce-

task queue in cenc;
32. Generate a new reduce-task queue

RQe,q+1;
33. Append all reduce tasks of J to the end of

RQe,q+1; }}}

Fig 2.The algorithm of task scheduler.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 48
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

For example, Fig. 1 illustrates the

locations of all blocks of a job Y over three
datacenters (Note that the input file of Y is
fragmented into six blocks, and each block
has two replicas.). Since cen2 holds the largest
number of Y’s unique blocks (i.e., four), policy
B will schedule four map tasks of Y to cen2
to process B1 , B2 , B3 , and B5 by
appending the four map tasks to the end
of MQ2,0. After that, cen1 still holds
one unscheduled block of Y (i.e., B4) and
cen3 still holds two unscheduled blocks of Y
(i.e., B4 and B6). Hence, policy B will
schedule the remaining two map tasks of Y to
cen3 to process B4 and B6 by inserting the
two map tasks to the end of MQ3,0 . Finally,
due to the fact that cen2 holds the
maximum number of unique blocks of Y,
policy B schedules all reduce tasks of Y to
cen2 by appending them to the end of
RQ2,0.

• Policy C
This policy is designed for a large job. If J is

a large job to a virtual MapReduce cluster,
using one datacenter of the cluster to run all
map tasks of J might need several rounds to
finish these map tasks, implying that job
turnaround time will prolong. To prevent this
from happening, it is better not to use a single
datacenter to run all these map tasks.

Hence, as long as J is a large job, JoSS
utilizes policy C, which in fact uses the same
strategy of policy B to schedule all tasks of J .
However, in policy C, all the map tasks
scheduled to cenc will not be put into
MQc,0 since MQc,0 is reserved for only
small jobs. Instead, these map tasks will be
put into a new map-task queue created for cenc.
Similarly, the reduce tasks of the large job
scheduled to cenc will be put into a new
reduce-task queue created for cenc , rather than
RQc,0 . The purpose is to separate large jobs
and small jobs into different queues and allow
JoSS to avoid job starvation.
C. Job Driven Scheduling Scheme(JoSS) and

JoSS-T
JoSS consists of three components: input-

data classifier, task scheduler, and task
assigner. The input-data classifier is designed to

classify input data uploaded by a user into one
of the two types: web document and non-web
document. A web document refers to a file
consisting of a lot of tags enclosed in angle
brackets. By simply inspecting the first several
sentences of a document, the input-data
classifier can easily know if it is a web
document or not. After the classification, the
input- data classifier records the type of the
input data in JoSS.

Whenever receiving a MapReduce job from
a user, the task scheduler determines the type
of the job and then schedules the job based
on one of policies A, B, and C.

Fig.2 illustrates the algorithm of the task
scheduler. Upon receiving J , the task
scheduler retrieves J ’s input- data type
classified by the input-data classifier and
checks whether JoSS has executed J on such
input-data type or not by calculating the
corresponding hash value and comparing the
value with H, where H is a set of hash values
previously generated and recorded by JoSS.

If the hash value is not in H (see line 4), it
means that JoSS does not know J ’s average
filtering-percentage value and J’s job
classification. To obtain the above
information, the task scheduler simply appends
J ’s all map tasks and J ’s all reduce tasks to
two queues, denoted by MQFIFO and
RQFIFO , respectively. This allows the task
assigner to use the Hadoop FIFO algorithm [2]
to assign these tasks to idle VPSs. Once J is
completed, JoSS records the corresponding
hash value and average filtering-percentage
value.

However, if the hash value is in H (see line
7), it means that JoSS knows the average
filtering-percentage value of J . Then the task
scheduler schedules J as follows: If J is a small
RH job, the abovementioned policy A is used
to schedule the tasks of J (please see lines 9 to
12). Otherwise, it means that J is either a small
MH job or a large job, and the task scheduler
uses lines 14 to 37 to schedule J . Recall that
policies B and C are used to schedule a small
MH job and a large job, respectively. If J is a
small MH job, the task scheduler directly
inserts J ’s map tasks to the permanent map-
task queue of the determined datacenter (see

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 49
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

line 22), and also inserts J ’s reduce tasks to
the permanent reduce-task queue of the
determined datacenter (see line 33). In other
words, no additional queue will be created for
any small jobs. The purpose is not to increase
the queue management overhead of JoSS.

Task-driven Task Assigner(TTA)
Input: an idle slot of VPSc,l
Output: a task assigned to VPSc,l
Procedure:

1. Let Imap and Ired be two indexes with the

same initial value 0;
2. while VPSc,l has an idle slot{
3. Let Nmap be the total number of map-

task queues in cenc;
4. Let Nred be the total number of reduce-

task queues in cenc;
5. if the slot is a map slot{
6. if MQFIFO is not empty{
7. Use FIFO to assign a map task from

MQFIFO to VPSc,l
8. Remove the task from MQFIFO;}
9. else{
10. Imap = Imap mod (Nmap +1);
11. Assign the first task from MQc,Imap

to VPSc,l;
12. Remove the task from MQc,Imap;
13. Imap ++;}}
14. else{/*i.e., the idle slot is a reduce slot;*/
15. if RQFIFO is not empty {
16. Assign the first reduce task from

RQFIFO to VPSc,l;
17. Remove the task from RQFIFO;}
18. else {
19. Ired=Ired mod (Nred+1);
20. Assign the first reduce task from

RQc,Ired to VPSc,l;
21. Remove the task from RQc,Ired;
22. Ired++; }}}

Fig. 3. The algorithm of task-driven task

assigner (TTA)

In another case, if J is a large job, the task

scheduler addi- tionally generates a new map-
task queue and a new reduce- task queue to
respectively put J ’s map tasks and J ’s reduce
tasks (see lines 24 to 26 and lines 35 to 37).

This will allow the task assigner to properly
assign small jobs and large jobs to VPSs.

Fig. 3 illustrates how TTA works.
Whenever VPSc has an idle map slot, TTA
preferentially assigns a map task from
MQFIFO to VPSc based on the Hadoop FIFO
algorithm (see lines 7 to 8). The goal is to
preferentially execute all newly submitted
jobs one by one and obtain their filtering-
percentage values to determine their job
classifications. However, if MQFIFO is empty,
TTA assigns one of the first map tasks from
all the other map-task queues of cenc in a
round-robin fashion (see lines 10 to 13) such
that tasks can be assigned quickly and job
starvation can be avoided.

Similarly, whenever VPSc has an idle
reduce slot, TTA preferentially assigns a
reduce task from RQFIFO to VPSc . Only
when RQFIFO is empty, TTA assigns one
of the first reduce tasks from other reduce-
task queues of cenc to VPSc;‘ (see lines 19 to
22).

VI. CONCLUSION

In this paper, we have introduced JoSS
for scheduling Map- Reduce jobs in a virtual
MapReduce cluster consisting of a set of VPSs
rented from a VPS provider. Different from
current MapReduce scheduling algorithms,
JoSS takes both the map-data locality and
reduce-data locality of a virtual MapReduce
cluster into consideration. JoSS classifies jobs
into three job types, i.e., small map-heavy
job, small reduce-heavy job, and large job, and
introduced appropriate policies to schedule
each type of job. In addition, JoSS-T is further
introduced to respectively achieve a fast task
assignment and improve the VPS-locality.

VII . REFERENCES

[1] Ming-Chang Lee, Jia-Chun Lin, and Ramin
Yahyapour ,“Hybrid Job-Driven
Scheduling for Virtual MapReduce
Clusters”, IEEE ,May 2016.

[2] J. Dean and S. Ghemawat, “MapReduce:
Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113,2008.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 50
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[3] Zaharia, D. Borthakur, J. Sen Sarma, K.
Elmeleegy, S. Shenker,and I. Stoica, “Delay
scheduling: A simple technique for
achieving locality and fairness in cluster
scheduling,” in Proc. 5th Eur.
Conf.Comput. Syst., Apr. 2010, pp. 265–
278.

[4] C. He, Y. Lu, and D. Swanson,
“Matchmaking: A new mapreduce
scheduling technique,” in Proc. IEEE 3rd
Int. Conf. Cloud Comput.Technol. Sci.,
Nov. 2011, pp. 40–47.

[5] J. Jin, J. Luo, A. Song, F. Dong, and R.
Xiong, “BAR: An efficientdata locality
driven task scheduling algorithm for cloud
computing,” in Proc. 11th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput., May
2011, pp. 295–304.

[6] C. Tian, H. Zhou, Y. He, and L. Zha, “A
dynamic mapreduce scheduler for
heterogeneous workloads,” in Proc. IEEE
8th Int.Conf. Grid Cooperative Comput.,
2009, pp. 218–224.

[7] Z. Guo, G. Fox, and M. Zhou,
“Investigation of data locality in
mapreduce,” in Proc. 12th IEEE/ACM Int.
Symp. Cluster, Cloud GridComput., May
2012, pp. 419–426.

[8] M. Ehsan, and R. Sion, “LiPS: A cost-
efficient data and task co-scheduler for
MapReduce,” in Proc. IEEE 27th Int.
Symp.Parallel Distrib. Process. Workshops
PhD Forum, May 2013,pp. 2230–2233.

[9] J. Polo, D. Carrera, Y. Becerra, J. Torres, E.
Ayguade, M. Steinder,and I. Whalley,
“Performance-driven task co-scheduling for
mapreduce environments,” in Proc. IEEE
Netw. Oper. Manage. Symp.,2010, pp.
373–380.

[10] B. Palanisamy, A. Singh, L. Liu, and B.
Jain, “Purlieus: Localityawareresource
allocation for MapReduce in a cloud,” in
Proc. Int.Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2011, pp. 58.

[11] J. Park, D. Lee, B. Kim, J. Huh, and S.
Maeng, “Locality-aware dynamic VM
reconfiguration on MapReduce clouds,” in
Proc. 21stInt. Symp. High-Perform. Parallel
Distrib. Comput., Jun. 2012,pp. 27–36.

[12] X. Bu, J. Rao, and C.-Z. Xu, “Interference
and locality-aware task scheduling for
MapReduce applications in virtual
clusters,” inProc. 22nd Int. Symp. High-
Perform. Parallel Distrib. Comput.,
Jun.2013, pp. 227–238.

[13] S.-Y. Ko, I. Hoque, B. Cho, and I. Gupta,
“Making cloud intermediate data fault-
tolerant,” in Proc. ACM Symp. Cloud
Comput.,2010, pp. 181–192.

[14] T. White, Hadoop: The Definitive Guide.
Sebastopol, CA, USA:O’Reilly Media, Jun.
5, 2009.

IJSER

http://www.ijser.org/

	I. Introduction
	II. HADOOP FRAMEWORK
	B.HDFS File System
	C. Input/Output Read and Write

	III. BACKGROUND
	IV. THE EXISTING SCHEME
	A.Hadoop default FIFO scheduler
	B.The Fair Scheduler
	C.The Capacity Scheduler

	V. PROPOSED SYSTEM
	A.Job Classification
	B.Scheduling Policies
	 Policy A
	 Policy B
	 Policy C
	C. Job Driven Scheduling Scheme(JoSS) and JoSS-T

	VI. CONCLUSION
	VII . REFERENCES

