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Abstract 
 Virtual private servers (VPSs) rented 

from VPS provider is cost-efficient for a 
tenant with a limited budget to establish a 
virtual MapReduce cluster. To provide an 
appropriate scheduling scheme for this type of 
computing environment, we propose in this 
paper a job-driven scheduling scheme (JoSS) 
from a tenant’s perspective. JoSS provides not 
only job level scheduling, but also map-task 
level scheduling and reduce-task level 
scheduling. JoSS classifies MapReduce jobs 
based on job scale and job type and designs an 
appropriate scheduling policy to schedule 
each class of jobs. The goal is to improve data 
locality for both map tasks and reduce tasks, 
avoid job starvation, and improve job 
execution performance. Two variations of 
JoSS are further introduced to separately 
achieve a better map-data locality and a faster 
task assignment. Extensive experiments are 
conducted to evaluate and compare the two 
variations with current scheduling algorithms 
supported by Hadoop.  

Keywords- MapReduce, Hadoop, virtual 
MapReduce cluster, map-task scheduling, 
reduce-task scheduling 

I.  INTRODUCTION  
Map-reduce is a distributed 

programming model proposed by Google to 
process vast amount of data in a parallel 
manner. Due to programming-model 
simplicity, built-in data distribution, 
scalability, and fault tolerance .MapReduce 

and its open-source implementation called 
Hadoop have been widely employed by 
many companies, including Facebook, 
Amazon, IBM, Twitter, and Yahoo to 
process their business data. MapReduce has 
also been used to solve diverse applications, 
such as machine learning, data mining, 
bioinformatics, social network, and 
astronomy.  

MapReduce enables a programmer to 
define a MapReduce job as a map function 
and a reduce function, and provides a 
runtime system to divide the job into 
multiple map tasks and reduce tasks and 
perform these tasks on a MapReduce cluster 
in parallel. Typically, a MapReduce cluster 
consists of a set of commodity 
machines/nodes located on several racks and 
interconnected with each other in a local 
area network (LAN). In this paper, we call 
this a conventional MapReduce cluster. Due 
to the fact that building and maintaining a 
conventional MapReduce cluster is costly 
for a person/organization with a limited 
budget, an alternative way is to establish a 
virtual MapReduce cluster by either renting 
a MapReduce framework from a 
MapReduce service provider (e.g., Amazon) 
or renting multiple virtual private servers 
(VPSs) from a VPS provider (e.g., Linode 
or Future Hosting). Each VPS is a virtual 
machine with its own operating system and 
disk space. Due to some reasons, such as 
availability issue of a datacenter or resource 
shortage on a popular datacenter, a tenant 
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might rent VPSs from different datacenters 
operated by a same VPS provider to 
establish his/her virtual MapReduce cluster. 

II. HADOOP FRAMEWORK 
Apache Hadoop is an open source 

framework for distributed storage and 
processing of large sets of data on commodity 
hardware. Hadoop enables businesses to 
quickly gain insight from massive amounts of 
structured and unstructured data. Numerous 
Apache Software Foundation projects make up 
the services required by an enterprise to 
deploy, integrate and work with Hadoop. 

A. Map/Reduce Programming Model 
MapReduce paradigm is based on sending 

the computer to where the data resides. 
MapReduce program executes in three stages, 
namely map stage, shuffle stage, and reduce 
stage. During a MapReduce job, Hadoop sends 
the Map and Reduce tasks to the appropriate 
servers in the cluster. The framework manages 
all the details of data-passing such as issuing 
tasks, verifying task completion, and copying 
data around the cluster between the nodes. 
Most of the computing takes place on nodes 
with data on local disks that reduces the 
network traffic. After completion of the given 
tasks, the cluster collects and reduces the data 
to form an appropriate result, and sends it back 
to the Hadoop server. 
B.HDFS File System  

Hadoop File System was developed using 
distributed file system design. It is run on 
commodity hardware. Unlike other distributed 
systems, HDFS is highly fault tolerant and 
designed using low-cost hardware. HDFS holds 
very large amount of data and provides easier 
access. To store such huge data, the files are 
stored across multiple machines. These files are 
stored in redundant fashion to rescue the 
system from possible data losses in case of 
failure. HDFS also makes applications 
available to parallel processing. 
C. Input/Output Read and Write 

The MapReduce framework operates on 
<key, value> pairs, that is, the framework 
views the input to the job as a set of <key, 
value> pairs and produces a set of <key, value> 

pairs as the output of the job, conceivably of 
different types. The key and the value classes 
should be in serialized manner by the 
framework and hence, need to implement the 
Writable interface. Additionally, the key 
classes have to implement the Writable-
Comparable interface to facilitate sorting by the 
framework. Input and Output types of a 
MapReduce job: (Input) <k1, v1> map -><k2, 
v2> reduce -><k3, v3>(Output). 

III. BACKGROUND 
The FIFO algorithm [2] is a default 

scheduling algorithm provided by Hadoop 
MRv1. It follows a strict job submission order 
to schedule each map task of a job and 
meanwhile attempts to schedule a map task to 
an idle node that is close to the corresponding 
map-input block. However, the FIFO algorithm 
only focuses on map-task scheduling, rather 
than reduce-task scheduling. Hence, when 
FIFO is adopted in a virtual MapReduce 
cluster, its low reduce-data locality might cause 
a long job turnaround time. Besides, FIFO is 
designed to achieve node locality and rack 
locality in conventional MapReduce clusters, 
rather than achieving the VPS-locality and Cen-
locality in a virtual MapReduce cluster. 
Consequently, the map-data locality of FIFO 
might be low in a virtual MapReduce cluster. In 
addition to the FIFO algorithm, Hadoop also 
provides the fair scheduling algorithm and the 
capacity scheduling algorithm-*- 

The former is proposed by Facebook to 
fairly assign computation resources to jobs such 
that all jobs obtain an equal share of resources 
over time. The latter, introduced by Yahoo!, 
also allows multiple users to share a Map-
Reduce cluster. It supports multiple queues and 
allocates a fraction of a cluster’s computation 
resources to each queue, i.e., all jobs submitted 
to a queue can only access to the resource 
allocated to the queue. Similar to these two 
algorithms, JoSS allows multiple jobs to 
simultaneously share the computation resource 
of a virtual MapReduce cluster. But different 
from the two algorithms, JoSS further provides 
reduce-task scheduling to improve job 
performance. There have been many studies 
[3], [4], [6], [7], [11], [14] on MapReduce task 
scheduling.  
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Zaharia et al. [3] presented the delay 
scheduling algorithm to improve data locality 
by following the FIFO algorithm but relaxing 
the strict FIFO job order. If the scheduling 
heuristic cannot schedule a local map task, it 
postpones the execution of the corresponding 
job and searches for another local map task 
from pending jobs. A similar but improved 
approach is further introduced in [4]. However, 
similar to FIFO, this approach did not provide 
reduce-task scheduling. Jin et al. [5] proposed 
the BAlance-Reduce (BAR) algorithm, which 
produces an initial task allocation for all map 
tasks of a job and then takes network state and 
cluster workload into consideration to 
interactively adjust the task allocation to reduce 
job turnaround time. In order to simplify BAR, 
the authors assumed that all local map tasks 
spend identical execution time. But this 
assumption is not realistic since the map-task 
execution time fluctuates even though when the 
processed input size is the same. Besides, 
reduce-task scheduling was not addressed by 
BAR. Tian et al. [6] proposed a MapReduce 
workload prediction mechanism to classify 
MapReduce workloads into three categories 
based on their CPU and I/O utilizations and 
then proposed a Triple-Queue Scheduler to 
improve the usage of both CPU and disk I/O 
resources under heterogeneous workloads.  

Guo [7] presented an optimal map-task 
scheduling algorithm, which converts a task 
assignment problem into a Linear Sum 
Assignment Problem so as to find the optimal 
assignment. Nevertheless, applying this 
algorithm to real-world MapReduce clusters 
needs to carefully determine an appropriate 
time point to conduct the algorithm since slaves 
might become idle at different time points. 
Ehsan and Sion [8] introduced a co-scheduler 
called LiPS, which utilizes linear programming 
to simultaneously co-schedule map-input data 
and map tasks to nodes such that dollar cost can 
be minimized. But their assumption, i.e., 
MapReduce jobs and their input data are 
submitted together, might increase job 
turnaround time since replicating the data to the 
distributed filesystem of the cluster needs to 
take a while. Polo et al. [9] introduced a task 
scheduler to dynamically predict the 

performance of concurrent MapReduce jobs 
and adjust the resource allocation for the jobs. 
The goal is to allow MapReduce jobs to meet 
their performance objectives without over-
provisioning of physical resources. Some other 
studies aim to enhance the performance of 
MapReduce in a cloud environment.  

Palanisamy et al. [10] presented a 
MapReduce resource allocation system called 
Purlieus, which enables a cloud provider to 
place MapReduce input data to appropriate 
physical machines and then place VMs to the 
physical machines so as to provide both map 
locality and reduce locality. Different from 
Purlieus, JoSS presented in this paper is 
designed from the perspective of a tenant who 
rents VPSs from a VPS provider to build a 
virtual MapReduce cluster, rather than from the 
perspective of a cloud provider. Park et al. [11] 
introduced a locality-aware dynamic VM 
reconfiguration technique for virtual clusters 
running the Hadoop platform by dynamically 
changing the computing resource of a VM to 
maximize the data locality of map tasks. Bu et 
al. [12] proposed a task scheduling strategy 
called ILA to mitigate interference between 
virtual machines and meanwhile preserve 
MapReduce task data locality. Similar to [10], 
the schemes proposed in [11] and [12] were 
designed from the viewpoint of a cloud 
provider since the data locality in all layers 
including node locality, rack locality, and off-
rack are clear to the provider. However, in a 
virtual MapReduce cluster considered in this 
study, a tenant does not know all of the above 
mentioned data-locality levels. 

 
IV.  THE EXISTING SCHEME 

A.Hadoop default FIFO scheduler 
The Hadoop default FIFO scheduler has 

already taken data locality into account. When 
a slave node with empty map slots sends the 
heartbeat signal, the MapReduce scheduler 
checks the first job in the queue. If the job has 
map tasks whose input data blocks are stored in 
the slave node, the scheduler assigns the node 
one of these local tasks. If a slave node has 
more  unused map slots, the scheduler will keep 
assigning local tasks to the node.  However, if 
the scheduler can no longer find a local task 
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from the first job, it assigns the node one and 
only one non-local task during this heartbeat 
interval, no matter how many free slots the 
node has. This default FIFO  scheduler, 
however, has deficiencies. First of all, it 
follows the strict FIFO job order to assign 
tasks, which means it will not allocate any task 
from other jobs if the first job in the queue still 
has an unassigned map task. Secondly, the data 
locality is randomly decided by the heartbeat 
sequence of slave nodes. If we have a large 
cluster that executes many small jobs, the data 
locality rate could be quite low. As mentioned, 
in a MapReduce cluster, tasks are assigned to a 
slave node in response to the node’s heartbeat. 
With the FIFO scheduler, heartbeats are also  
processed in a FIFO order and a node is 
assigned a non-local map task when there is no 
local task from the first job. In a large cluster 
many nodes heartbeat simultaneously. 
However, a small job has less input data that 
are stored in a small number of nodes. It is thus 
a high probability event that the scheduler 
assigns tasks to slave nodes that do not have the 
small job’s input data but give heartbeats first. 
A slave node with empty map slots that sends 
in a heartbeat first will always be assigned at 
least one map task, local or non-local. It is 
highly likely that the job’s tasks will be 
assigned to many of the nodes which do not 
have the input data blocks before a node even 
gets a chance to grab a local task from the job. 

B.The Fair Scheduler 
The Fair Scheduler aims to give every user a 

fair share of the cluster capacity over time. If a 
single job is running, it gets all of the cluster. 
As more jobs are submitted, free task slots are 
given to the jobs in such a way as to give each 
user a fair share of the cluster. A short job 
belonging to one user will complete in a 
reasonable time even while another user’s long 
job is running, and the long job will still make 
progress. Jobs are placed in pools, and by 
default, each user gets their own pool. A user 
who submits more jobs than a second user will 
not get any more cluster resources than the 
second, on average. It is also possible to define 
custom pools with  guaranteed minimum 
capacities defined in terms of the number of 
map and reduce slots, and to set weightings for 

each pool. The Fair Scheduler supports 
preemption, so if a pool has not received its fair 
share for a certain period of time, then the 
scheduler will kill tasks in pools running over 
capacity in order to give the slots to the pool 
running under capacity.  

C.The Capacity Scheduler 
The Capacity Scheduler takes a slightly 

different approach to multiuser scheduling. A 
cluster is made up of a number of queues (like 
the Fair Scheduler’s pools), which may be 
hierarchical (so a queue may be the child of 
another queue), and each queue has an 
allocated capacity. This is like the Fair 
Scheduler, except that within each queue, jobs 
are scheduled using FIFO scheduling (with 
priorities). In effect, the Capacity Scheduler 
allows users or organizations (defined using 
queues) to simulate a separate MapReduce 
cluster with FIFO scheduling for each user or 
organization. The Fair Scheduler, by contrast, 
enforces fair sharing within each pool, so 
running jobs share the pool’s resources. 

 
V. PROPOSED SYSTEM 

The proposed system implements JoSS-
T in Hadoop-0.20.2 and conduct extensive 
experiments to compare them with several 
known scheduling algorithms supported by 
Hadoop, including the FIFO algorithm, Fair 
scheduling algorithm, and Capacity scheduling 
algorithm. The experimental results 
demonstrate that JoSS-T outperform the other 
tested algorithms in terms of map-data locality, 
reduce-data locality, and network overhead 
without causing too much overhead, regardless 
of job type and scale. 

The contributions of this proposed system 
are as follows. 

1. We introduce JoSS to appropriately 
schedule Map-Reduce jobs in a virtual 
MapReduce cluster by addressing both 
map-data locality and reduce-data 
locality from the perspective of a tenant. 

2. By classifying jobs into map-heavy and 
reduce heavy jobs and designing the 
corresponding policies to schedule each 
class of jobs, JoSS increases data locality 
and improves job performance. 
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Furthermore, by classifying jobs into 
large and small jobs and scheduling 
them in a round-robin fashion, JoSS 
avoids job starvation and improves job 
performance. 

3. A formal proof is also provided to 
determine the best threshold for 
classifying MapReduce jobs. 

4. JoSS-T is proposed to achieve two 
conflicting goals: speeding up task 
assignment and further increasing the 
VPS-locality. 

5. We refer to a set of MapReduce 
benchmarks to create two different 
MapReduce workloads for evaluating 
and comparing JoSS-T with three known 
scheduling algorithms supported by 
Hadoop. Moreover, a set of metrics 
showing data-locality, network 
overhead, job performance, and load 
balance are used to achieve a 
comprehensive comparison.  

A.Job Classification 
Before introducing the algorithm of JoSS, 

first describe how JoSS classifies jobs and 
schedules each class of jobs. Let Sreduce and 
Smap be the total reduce-input size and the total 
map-input size of J, respectively. Based on the 
ratio of Sreduce over Smap, J can be classified 
into either a reduce heavy job or a map-heavy 
job. If J satisfies Eq. (1), implying that the 
network overhead is dominated by J’s reduce-
input data, then J is classified as a reduce-heavy 
job (RH job for short). Otherwise, J is classified 
as a map-heavy job (MH job for short). Note 
that td is a threshold to determine the 
classification, td ≥ 0. 

 
                       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
> 𝑡𝑡𝑆𝑆                                        

(1) 
                     
In fact, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ ∣ 𝐵𝐵𝐵𝐵 ∣𝑆𝑆

𝐵𝐵=1   where |Bi| is 
the size of Bi, and Sreduce = ∑ (∣ 𝐵𝐵𝐵𝐵 ∣∙𝑆𝑆

𝐵𝐵=1
𝐹𝐹𝐹𝐹𝐵𝐵) where FPi is the filtering percentage of Bi 
showing the ratio of Mi’s map-output size over 
Mi’s map-input size, FPi ≥ 0. In order to reduce 
Eq. (1) and the above classification, we chose 
five MapReduce benchmarks: Word-Count, 
Grep, Inverted-Index, Sequence-Count and 
Permu from PUMA to conduct experiments. 

Eq. (1) can be reduced as based on the analysis 
from [1], 

 
 

       
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

=
∑ (∣ 𝐵𝐵𝐵𝐵 ∣∙ 𝐹𝐹𝐹𝐹𝐵𝐵)𝑆𝑆
𝐵𝐵=1
∑ ∣ 𝐵𝐵𝐵𝐵 ∣𝑆𝑆
𝐵𝐵=1

= 𝐹𝐹𝐹𝐹𝐹𝐹 

> 𝑡𝑡𝑆𝑆        (2) 
and the condition used to classify J can be 
reduced as 

 

         J= �𝑆𝑆 𝑅𝑅𝑅𝑅 𝐹𝐹𝑗𝑗𝑗𝑗,          𝐵𝐵𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹 > 𝑡𝑡𝑆𝑆
𝑆𝑆 𝑀𝑀𝑅𝑅 𝐹𝐹𝑗𝑗𝑗𝑗,         𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆.              

�                          

(3) 
 

Based on the input scale of J to Navg VPS, 
which is the average datacenter scale of a 
virtual MapReduce ,cluster  the classification 
rule is below, 

 

𝐽𝐽 = �𝑆𝑆 𝑒𝑒𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 𝐹𝐹𝑗𝑗𝑗𝑗, 𝐵𝐵𝑖𝑖 𝑆𝑆 ≤ 𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁_𝑉𝑉𝐹𝐹𝑆𝑆
𝑆𝑆 𝑒𝑒𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆 𝐹𝐹𝑗𝑗𝑗𝑗,                            𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆.

�                           

(4) 
                   
B.Scheduling Policies 

JoSS utilizes the following three scheduling 
policies. 

• Policy A 
This policy is designed for a small RH job. 

If J is a small RH job, it would be better that 
each reducer of J is close to all mappers of J 
since the reducer can more quickly retrieve its 
input data from all the mappers. But this also 
implies that all mappers of J should be close to 
each other. Hence, policy A works as follows. 
It first chooses cenw, which is a datacenter 
having the least amount of unprocessed tasks 
among all the k datacenters, cenw, belongs to 
cen1,cen2, . . . ,cenk. Then it schedules all tasks 
of J to cenw by putting J’s map tasks and J’s 
reduce tasks at the end of MQw,0 and RQw,0, 
respectively. In this way, all these tasks can be 
executed only by the VPSs at cenw, and each 
reducer of J can retrieve its input data from its 
local datacenter (i.e., reduce-data locality can 
be improved). 
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Fig.  1.  An example showing  block  
locations  of job Y in a  virtual 

MapReduce cluster comprising three 
datacenters. 

 
• Policy B 

This policy is designed for a small MH job. 
If J is a small MH job, it would be better that 
each mapper of J is close to its input block,  and  
each  reducer of J is close  to most mappers of J 
. Hence,  policy B works  as follows:  It 
schedules  J ’s map  tasks  based  on the  
number of unique input blocks  of J held  by 
each  datacenter. If a datacenter holds more  
unique blocks  of  J , more  map  tasks  of  J 
will  be scheduled to the  VPSs at this  
datacenter. The  purpose is allowing  each  
mapper  of  J to  retrieve  its  input  block from  
its local  datacenter. In addition, to make  J ’s 
reducers  close  to  most   J ’s  mappers,  policy   
B  schedules  all reduce tasks  of J to  the  
datacenter that  holds  the  maximum number of 
J ’s unique blocks. 

 
 

The task scheduler of JoSS 
Input : J and input-data description 
Output:task-scheduling decision 
Procedure: 

 
1. Calculate a hash value for J’s executable 

code and J’s input-data type; 
2. Let H be a set of hash values previously 

generated by JoSS; 
3. If the hash value is not in H{ 
4.    Append all map tasks of J to the end of 

MQFIFO; 
5.    Append all reduce tasks of J to the end 

of RQFIFO; } 
6. else { 
7.    if J is a small RH job {//Use policy A. 

8.       Let cenw be a datacenter having the 
least  unprocessed tasks among 
cen1,cen2,…cenk; 

9.    Append all map tasks of J to the end of 
MQw,0; 

10.    Append all reduce tasks of J to the end 
of RQw,0;} 

11. else { 
12.     Let Lc be a set of all unique input 

blocks of J held by cenc where c=1,2,…k; 
13.     Let α = m; /*m is the number of map 

tasks of J.*/ 
14.     while α > 0{/*i.e., not all map tasks of 

J are scheduled.*/ 
15.     Let Ld is the first largest set among 

L1,L2,..…,Lk; 
16.     Let |Ld| be the size of Ld; 
17.     Let cend be the related datacenter; 
18.     If J is a small MH job {//Use policy B 
19.       Append |Ld | map tasks of J to the end 

of MQd,0;} 
20.    else {/*i.e., J is a large job, so use 

policy C.*/ 
21.        Let ρ be the total number of map-task 

queues in cend; 
22.        Generate a new map-task queue 

MQd,p+1; 
23.        Append |Ld| map tasks of J to the end 

of MQd,p+1;} 
24.        for c=1 to k{ 
25.        Delete a block from Lc if the block is 

in Ld;} 
26.        α  = α-|Ld|;} 
27.        Let cenc be a datacenter holding the 

largest number of unique input blocks of 
J; 

28. If J is a small MH job{//Use policy B. 
29.      Append all reduce tasks of J to the end 

of RQe,0;} 
30. else { /*i.e., J is large job, so use policy 

C.*/ 
31.      Let q be the total number of reduce-

task queue in cenc; 
32.      Generate a new reduce-task queue 

RQe,q+1; 
33. Append all reduce tasks of J to the end of 

RQe,q+1; }}} 
 

 
Fig 2.The algorithm of task scheduler. 
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For   example, Fig.  1  illustrates  the   

locations  of  all blocks  of  a  job  Y over  three   
datacenters (Note  that  the input file  of  Y is  
fragmented  into  six  blocks,  and   each block 
has two replicas.). Since cen2  holds  the largest  
number of Y’s unique blocks (i.e., four),  policy  
B will schedule four  map  tasks  of Y to cen2  
to process  B1 , B2 , B3 , and  B5 by  
appending the  four  map   tasks   to  the  end   
of  MQ2,0. After    that,    cen1     still   holds    
one unscheduled block of Y (i.e., B4 ) and  
cen3  still holds  two unscheduled blocks  of Y 
(i.e., B4   and  B6 ). Hence,  policy B will 
schedule the remaining two  map  tasks  of Y to 
cen3 to  process  B4   and  B6   by  inserting the  
two  map  tasks  to the  end  of MQ3,0 . Finally,  
due  to the  fact that  cen2   holds the  
maximum number  of  unique blocks  of  Y, 
policy  B schedules  all  reduce  tasks   of  Y  to  
cen2    by  appending them  to the  end  of 
RQ2,0. 

• Policy C 
This policy is designed for a large job. If J is 

a large job to a virtual MapReduce cluster,  
using  one datacenter of the cluster to run  all 
map  tasks  of J might  need  several  rounds to 
finish  these  map  tasks,  implying that  job 
turnaround time will  prolong. To prevent this  
from  happening, it is better not to use a single 
datacenter to run all these map tasks. 

Hence,  as long  as J is a large  job, JoSS 
utilizes  policy  C, which  in fact uses the same  
strategy of policy B to schedule all tasks of J . 
However, in policy C, all the map  tasks 
scheduled   to  cenc    will  not  be  put   into  
MQc,0    since  MQc,0    is reserved for only  
small  jobs. Instead, these  map  tasks  will be 
put into a new map-task queue created for cenc. 
Similarly,  the  reduce tasks  of the  large  job 
scheduled to cenc   will  be put  into  a new  
reduce-task queue created for cenc , rather than  
RQc,0 . The purpose is to separate large jobs 
and  small jobs into different queues and allow 
JoSS to avoid job starvation. 
C. Job Driven Scheduling Scheme(JoSS) and 

JoSS-T 
JoSS consists  of three  components: input-

data classifier,  task scheduler, and  task 
assigner. The input-data classifier is designed to 

classify input data uploaded by a user into one 
of the two types: web document and non-web 
document. A web document refers to a file 
consisting of a lot of tags enclosed in angle 
brackets. By simply inspecting the first several 
sentences of a document, the input-data 
classifier can easily know if it is a web 
document or not. After the classification, the 
input- data classifier records the type of the 
input data in JoSS. 

Whenever receiving a MapReduce job from  
a user,  the task  scheduler determines the  type   
of  the  job  and   then schedules the job based  
on one of policies  A, B, and  C.  

Fig.2 illustrates the algorithm of the task 
scheduler. Upon  receiving J , the  task  
scheduler retrieves J ’s input- data  type  
classified  by the  input-data classifier  and  
checks whether JoSS has executed J on such 
input-data type or not by calculating the 
corresponding hash value  and comparing the 
value with H, where H is a set of hash values  
previously generated and recorded by JoSS. 

If the hash value is not in H (see line 4), it 
means that JoSS does  not  know  J ’s average 
filtering-percentage value and J’s job 
classification. To obtain  the  above  
information, the task scheduler simply  appends 
J ’s all map  tasks  and  J ’s all reduce  tasks   to  
two   queues,  denoted  by   MQFIFO  and 
RQFIFO , respectively. This allows the task 
assigner to use the Hadoop FIFO algorithm [2] 
to assign these tasks to idle VPSs. Once J is 
completed, JoSS records the corresponding 
hash value and average filtering-percentage 
value. 

However, if the hash  value  is in H (see line 
7), it means that JoSS knows the average 
filtering-percentage value  of J . Then the task 
scheduler schedules J as follows: If J is a small 
RH job, the abovementioned policy A is used 
to schedule the tasks of J (please see lines 9 to 
12). Otherwise, it means that J is either a small 
MH job or a large job, and the task scheduler 
uses lines 14 to 37 to schedule J . Recall that 
policies B and C are used  to schedule a small 
MH job and  a large job, respectively.  If J is a 
small  MH  job, the  task  scheduler directly 
inserts  J ’s map  tasks  to the  permanent map-
task queue of the determined datacenter (see 
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line 22), and  also inserts  J ’s reduce tasks  to  
the  permanent  reduce-task queue of  the 
determined datacenter (see line 33). In other 
words, no additional queue will be created for 
any small jobs. The purpose is not to increase 
the queue management overhead of JoSS. 

 
Task-driven Task Assigner(TTA) 
Input: an idle slot of VPSc,l 
Output: a task assigned to VPSc,l 
Procedure: 

 
1. Let Imap and Ired be two indexes with the 

same initial value 0; 
2. while VPSc,l has an idle slot{ 
3.    Let Nmap be the total number of map-

task queues in cenc; 
4.    Let Nred be the total number of reduce-

task queues in cenc; 
5.    if the slot is a map slot{ 
6.       if MQFIFO is not empty{ 
7.         Use FIFO to assign a map task from 

MQFIFO to VPSc,l 
8.         Remove the task from MQFIFO;} 
9.       else{ 
10.          Imap = Imap mod (Nmap +1); 
11.         Assign the first task from MQc,Imap 

to VPSc,l; 
12.         Remove the task from MQc,Imap; 
13.         Imap ++;}} 
14. else{/*i.e., the idle slot is a reduce slot;*/ 
15.      if RQFIFO is not empty { 
16.         Assign the first reduce task from 

RQFIFO to VPSc,l; 
17.         Remove the task from RQFIFO;} 
18.      else { 
19.         Ired=Ired mod (Nred+1); 
20.        Assign the first reduce task from 

RQc,Ired to VPSc,l; 
21.        Remove the task from RQc,Ired; 
22.        Ired++; }}} 

 
Fig. 3. The algorithm of task-driven task 

assigner (TTA) 
 
In another case, if J is a large job, the task 

scheduler addi- tionally generates a new map-
task queue and a new reduce- task queue to 
respectively put  J ’s map  tasks and  J ’s reduce 
tasks  (see lines 24 to 26 and  lines  35 to 37). 

This will allow the  task  assigner to  properly 
assign  small  jobs  and  large jobs to VPSs. 

Fig. 3 illustrates how  TTA works.  
Whenever VPSc has an  idle  map  slot,  TTA  
preferentially assigns   a  map  task from 
MQFIFO to VPSc based on the Hadoop FIFO 
algorithm (see  lines  7 to  8). The  goal  is to  
preferentially execute  all newly  submitted 
jobs one by one and  obtain  their  filtering- 
percentage values  to determine their job 
classifications. However, if MQFIFO  is empty, 
TTA assigns  one of the first map  tasks  from  
all the  other  map-task queues of cenc  in a 
round-robin fashion  (see lines 10 to 13) such  
that  tasks  can be assigned quickly  and job 
starvation can be avoided. 

Similarly,  whenever VPSc  has  an idle  
reduce slot, TTA preferentially assigns  a 
reduce task  from  RQFIFO  to VPSc .  Only  
when  RQFIFO   is  empty,  TTA assigns  one 
of the first reduce tasks  from  other  reduce-
task queues of cenc  to VPSc;‘ (see lines 19 to 
22). 

 
VI. CONCLUSION 

In this paper, we have  introduced JoSS 
for scheduling Map- Reduce jobs in a virtual 
MapReduce cluster consisting of a set of VPSs 
rented from a VPS provider. Different  from 
current MapReduce scheduling algorithms, 
JoSS takes both the map-data locality and 
reduce-data locality of a virtual MapReduce 
cluster  into  consideration. JoSS classifies  jobs 
into  three  job types,  i.e., small map-heavy 
job, small reduce-heavy job, and large  job, and  
introduced appropriate policies  to schedule 
each type  of job. In addition, JoSS-T is further 
introduced  to  respectively achieve a fast task 
assignment and improve the VPS-locality. 
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